
App Note

 1 / 12

FCM32F0xx/FCM32H0xx Application Notes

(For D Version IC)

FCM32F0xx/FCM32H0xx is a MCU Chip based on the Cortex M0 core, it’s compatible with the S**32F0xx

series. However, there are some differences between them due to the production process and circuit design.

This document applies to FCM32x030, FCM32x031 and FCM32x042.

App Note

 2 / 12

Contents

1. Similarities .. 3

2. Differences ... 3

3. Notes .. 4

3.1 FCM Device Recognition ... 4

3.2 ADC ... 4

3.2.1 ADC Accuracy .. 4

3.2.2 Software Triggers a Multi-channel Discontinuous Conversion doesn’t work properly 4

3.2.3 ADC Bit Selection .. 5

3.2.4 ADC Trigger be lost before ADC RDY ... 5

3.3 VBAT Power Supply ... 6

3.4 SPI ... 6

3.4.1 SPI Receives Errors in Bits 9 to 16 ... 6

3.4.2 SPI Slave Receives Error .. 6

3.5 CAN ... 6

3.5.1 FCM CAN is not binary compatible with S**T .. 6

3.5.2 CAN Clock Accuracy Requirements... 7

3.6 RCC ... 7

3.6.1 TIM1 Input Clock Requires 2x PLLCLK (New function of FCM) ... 7

3.6.2 Clock Configuration Fails When HSE is used ... 7

3.6.3 HSI Accuracy is not Meet the Spec over Whole Temperature .. 7

3.7 USART ... 8

3.7.1 ISR->TC bit is Wrong Setting ... 8

3.7.2 When Using HSI, the Baud Rate is not Accuracy enough over Whole Temperature 8

3.7.3 When Automatic Baud Rate Detection is used, Subsequent Data cannot be received 9

3.8 Hardware Computing Unit (FCM added) .. 9

3.9 FLASH .. 9

3.9.1 H0xx Using Flash Turbo (FLASH acceleration function) .. 9

3.9.2 FLASH Waiting Cycle ... 9

3.10 Unique ID (UID) .. 9

3.11 Failed to write the roll code ... 10

3.12 PWR CR reg is Incorrectly Reset ... 10

3.13 I2C ... 10

4. Version History ... 11

5. Others ... 12

App Note

 3 / 12

1. Similarities

⚫ M0 Core

⚫ Pin Assignment

⚫ Memory map

⚫ Development environment (Keli/IAR etc.)

⚫ Writer tools

⚫ Firmware library / Example code

⚫ Same frequency performance

⚫ Timing compatibility

2. Differences

Product STM32F0 FCM32F0 FCM32H0

VDD 2.0~3.6V 1.8~5.5V 1.8~5.5V

VDDA 2.0~3.6V 1.8~5.5V 1.8~5.5V

Operating Temperature Range -40~125 -40~125

Coremark Performance 103.8@48MHz 103.7@48MHz 211.3@96MHz

CPU/AHB/APB Max. Frequency 48MHz 48MHz 100MHz

Flash Operating Frequency 24MHz 24MHz 32MHz

Flash Turbo - - √

TIM Clock 48MHz 48MHz 200MHz

SPI Max. Frequency 24MHz 24MHz 50MHz

UART Max. Baud Rate 6Mbps 6Mbps 12.5Mbps

SPI2 Act-as I2S x √ √

Hardware Division Arithmetic x √ √

Hardware Square Root Arithmetic x √ √

HDMI-CEC √ x x

Boot loader USART/IIC/USB USART USART

Working Current(HSI8MHz) 4.9mA 3.7mA

Working Current (HSI48MHz) 22mA 15.0mA

Working Current (HSI8+PLL96MHz) - - 27.5mA

Stop Current(IDD+IDDA) 6.2uA 6.2uA 6.2uA

Standby Current(IDD+IDDA) 3.6uA 6.0uA 6.0uA

Note:

1. Use S**32F042 as reference.

2. The test conditions are 3.6V/25C, LSI/IWDG OFF and VDDA Monitor ON.

3. S**32F0 supports different boot ports according to the different models. Not all devices support the

ports listed in the table.

App Note

 4 / 12

3. Notes

3.1 FCM Device Recognition

FCM32F0/H0 series MCU models can be read at the address below in the information block to

distinguish them from other manufacturers.

Address Content Description

0x1FFF_F790 0x46433332 ‘FC32’ ASCII code

0x1FFF_F794 0x0046xxxv/

0x0048xxxv

46 = ‘F’, 48 = ‘H’

xxx=type, eg. 030

v=version, eg. A/B/C

3.2 ADC

3.2.1 ADC Accuracy

In some applications, the ADC accuracy is not enough, because the ADC electrical characteristics of

FCM are not the same as S**. For the same sampling time, the input impedance (RAIN) of FCM is

lower. The RAIN table is listed in the specification already.

Either solution or a combination of the below two:

1) Adjust the sampling time according to the external input impedance.

2) Reduce the external input impedance.

3.2.2 Software Triggers a Multi-channel Discontinuous Conversion doesn’t work properly

When an ADC needs to discontinuously convert multiple channels (DISCEN=1, CONT=0) and it’s

triggered by software (it means: only one channel conversion for each trigger), the ADC does not

work properly and the result of each conversion is the first channel in the sequence.

Solution:

Using a software-controlled channel switch mode, only one channel is allowed at a time before

starting the conversion.

For example, the channels need to be converted are 4, 16, and 17, in the red box are the added

code.

1) After the ADC configuration is complete, set the channel to be the last channel (17 is the last

channel in this example) (the original program set CHSELR to 4/16/17 in the ADC_Config ()

firmware).

App Note

 5 / 12

2) Before starting ADC conversion, set the channel want to be converted.

3.2.3 ADC Bit Selection

ADC supports data bits to be set to 6/8/10/12, but the ADC conversion time does not decrease with

the reduction of bits. The conversion time is fixed to the conversion time of 12 data bits.

3.2.4 ADC Trigger be lost before ADC RDY

After the ADC allowed, it needs to wait the time of tSTAB before allowing the conversion, during this

period, the ADC trigger is invalid (including software trigger).

The timing allowed by the ADC is as follows:

Therefore，after the ADC allowed, and the ADC software trigger is executed at once, ADC will not

initiate the conversion. As shown below, some users’ program do not follow this rule.

Solution:

Wait for the ADC to be READY before starting the conversion, using the code in the red box instead

of the previous line.

App Note

 6 / 12

3.3 VBAT Power Supply

The FCM MCU series do not provide backup battery power in Power Down Mode, and when the

main VDD is not provided, the VBAT will continue to supply power to the VDD by a diode inside the

IC. Therefore, for applications where power consumption is important, other power supply

measures should be taken.

3.4 SPI

3.4.1 SPI Receives Errors in Bits 9 to 16

When the SPI is set to 9 to 16 bits, the 8-bits MSB of 16-bit data is always be 00.

Solution:

Use 8-bit data read mode, read twice. If DMA is used for receiving, the size and length of DMA data

are set to 8 bits both.

Demonstration code (assuming high bit first)：

uint16_t tmp;

uint16_t data;

data = *((__IO uint8_t *)&SPIx->DR); // The lower 8 bits are read first in 8-bit mode

tmp = *((__IO uint8_t *)&SPIx->DR); // The higher 8 bits are ready first in 8-bit mode

data |= (tmp<<8); // Merge

3.4.2 SPI Slave Receives Error

When SPI operates in slave mode, SCK is same as master frequency /2, and the received data is back-

to-back (no gaps between bytes), then receive meet error.

Solution：

Requires SCK<= main frequency /3, in order to keep the correction when receiving back-to-back data

from the master.

3.5 CAN

3.5.1 FCM CAN is not binary compatible with S**T

Using the CAN library provided by FCM to recompile.

App Note

 7 / 12

3.5.2 CAN Clock Accuracy Requirements

When using the CAN function, the MCU clock source must use crystal oscillator and can’t use internal

RC OSC.

3.6 RCC

3.6.1 TIM1 Input Clock Requires 2x PLLCLK (New function of FCM)

TIM1 peripherals can use 2*PLLCLK as a clock source as follows:

It is implemented by the TIM1SW bit of RCC_CFGR3. When 2x PLLCLK is selected, SYSCLK/HCLK/PCLK

must be the same frequency.

That is, without any frequency division.

RCC_CFGR3

Address: 0x30

Reset value: 0x0000 0000

[9]: TIM1SW, 1 = select 2x PLLCLK as TIM1 clock source

3.6.2 Clock Configuration Fails When HSE is used

When the firmware configured the clock to use HSE, HSERDY was not waited after the HSE was

started, resulting in a clock configuration failure.

The reason is that the reset voltage of FCM32 is about 1.6V, and some crystal is difficult to startup

under this voltage, and HSERDY signal will not appear until VDD rises to a certain voltage. In this way,

when VDD rises slowly, MCU has started to execute clock configuration program and carry out

overflow timeout count at 1.6V voltage. There is no HSERDY signal before the count overflow, so the

clock configuration failed

Solution：

Modify the definition of HSE overflow time in the header file to more larger:

#define HSE_STARTUP_TIMEOUT ((uint16_t)0xffff) /*!< Time out for HSE start up */

The typical phenomenon of this fault is: there is no reaction after power-on, and the nRST pin of

the MCU is shorted to the ground once, then the MCU works normally.

3.6.3 HSI Accuracy is not Meet the Spec over Whole Temperature

When the ambient temperature is lower than <0℃ or higher than >60℃，the accuracy of the

internal HSI OSC may exceed 3% which affects serial port communication.

App Note

 8 / 12

Solution：

1) When the ambient temperature range is wide requirement, use an external crystal oscillator

2) Adopt automatic baud rate

3.7 USART

3.7.1 ISR->TC bit is Wrong Setting

ISR<TC>bit, during the data transmission process, if the CR1<TE> clears to 0, TC bit will be incorrectly

set, this can result in data loss in some applications that rely on the TC bit to interrupt sending data

(If the interval between clearing and setting on TE bit is shorter than the sending time of one byte,

the TC is repeatedly set to 1 during the sending time of one byte, as a result, the TC bit enters an

error interruption, and data written to the TDR is lost during this period).

Solution：

In an application that uses interrupt routine of TC bit for data sending, query ISR<TXE> bit before

writing the sending data.

void USARTx_IRQHandler(void)

{

 …

 if (USART_GetITStatus(USARTx, USART_IT_TC) != RESET) //Sending interruption

 {

 USART_ClearITPendingBit(USARTx, USART_IT_TC); // Clear the TC interrupt flag

 if (USARTx->ISR & USART_ISR_TXE) // query TXE

 {

 USARTx->TDR = *buf;

 …

 }

 }

}

3.7.2 When Using HSI, the Baud Rate is not Accuracy enough over Whole Temperature

The HSI accuracy may be affected by the temperature by more than 3%, so the serial port

communication may be error.

 Solution：

 The baud rate adaptive algorithm is adopted.

App Note

 9 / 12

3.7.3 When Automatic Baud Rate Detection is used, Subsequent Data cannot be received

 When automatic baud rate detection is enabled, subsequent data cannot be received after the

detection is successful.

 Solution：

 After successful detection, turn it off (USART->CR2.ABREN clears to 0).

3.8 Hardware Computing Unit (FCM added)

This MCU series add with hardware division and integer root operations, see the relevant

documentation.

3.9 FLASH

3.9.1 H0xx Using Flash Turbo (FLASH acceleration function)

In the FCM32H0xx series, the FLASH Turbo module is used to replace the prefetch-buf of the F0xx

series. The On and Off of the Flash Turbo module is still controlled by FLASH_ACR.PRFTBE bit, and the

cache operation is completely hardware without software intervention.

3.9.2 FLASH Waiting Cycle

The FLASH speed of FCM32x0xx is 32MHz, and when the MCU main frequency exceeds this value,

the correct FLASH waiting cycle must be set according to this speed (it can also be set follow 24MHz).

Some users' programs set the main frequency to 48MHz, but did not set the waiting cycle (the default

is 0), resulting in program execution errors.

Solution：

Use the correct clock configuration functions; Or set the FLASH wait period correctly before the clock

configuration of the original program.

3.10 Unique ID (UID)

All series of FCM32x0xx contain a unique ID whose address begins at 0x1FFF_F7AC with 3 consecutive

words (96 bits).

App Note

 10 / 12

3.11 Failed to write the roll code

When the function of roll code writing is enabled in some types of writer, roll code writing fails.

Solution：

Set the roll address within the first 32K of FLASH, keep that address in the source program, initialize

to full FF, and recompile.

For example, if the roll code is 4 bytes and the start address is 0x080007fc, add the following code to

the source program:

3.12 PWR CR reg is Incorrectly Reset

PWR-> CR register is only powered on, power off reset, other reset will not reset the register.

When using the PVD function (PVD is turned on) and relying on it to generate an interrupt, if PVD has

detected that the supply voltage is lower than the set value (PWR->CSR.PVDO=1), reset MCU and re-

enable PVD, it will not generate a PVD rising edge interrupt (because PVDE was turned on before the

MCU reset and always be 1 after that).

Solution：

Before enabling PVD, disable it (PWR-> CR.PVDE write 0 first)

3.13 I2C

When I2C1->SCL pin is mapped to PF1, the pin is unresponsive and I2C1 does not work properly.

Solution：

Do not use the AF1 feature of PF1.

App Note

 11 / 12

4. Version History

Date Revision Author Changes

2021/7/29 0.10

Dick Hou

First edition

2021/7/30 0.11 Added 3.8 UID

2021/8/9 0.12 Added instruction for ADC bit setting

2021/8/11 0.13 Added SPI related description; Section adjustment

2021/8/25 0.14 Added USART section

2021/11/4 0.15 Added 3.11 chapter of roll code burning

2022/1/24 0.16 Added description of 3.6.3 HSI temperature drift

2022/2/23 0.17 Added section 3.7.2

2022/5/23 0.18 Simplification3.7.2

Added section 3.2.4

Added section 3.9.2

2022/9/5 0.19 Added Description for 3.6.2

Added section 3.7.3

Added section 3.12

2023/3/2 0.20 Added section 3.4.2

2023/3/27 0.21 Added section 3.13

App Note

 12 / 12

5. Others

	1. Similarities
	2. Differences
	3. Notes
	3.1 FCM Device Recognition
	3.2 ADC
	3.2.1 ADC Accuracy
	3.2.2 Software Triggers a Multi-channel Discontinuous Conversion doesn’t work properly
	3.2.3 ADC Bit Selection
	3.2.4 ADC Trigger be lost before ADC RDY

	3.3 VBAT Power Supply
	3.4 SPI
	3.4.1 SPI Receives Errors in Bits 9 to 16
	3.4.2 SPI Slave Receives Error

	3.5 CAN
	3.5.1 FCM CAN is not binary compatible with S**T
	3.5.2 CAN Clock Accuracy Requirements

	3.6 RCC
	3.6.1 TIM1 Input Clock Requires 2x PLLCLK (New function of FCM)
	3.6.2 Clock Configuration Fails When HSE is used
	3.6.3 HSI Accuracy is not Meet the Spec over Whole Temperature

	3.7 USART
	3.7.1 ISR->TC bit is Wrong Setting
	3.7.2 When Using HSI, the Baud Rate is not Accuracy enough over Whole Temperature
	3.7.3 When Automatic Baud Rate Detection is used, Subsequent Data cannot be received

	3.8 Hardware Computing Unit (FCM added)
	3.9 FLASH
	3.9.1 H0xx Using Flash Turbo (FLASH acceleration function)
	3.9.2 FLASH Waiting Cycle

	3.10 Unique ID (UID)
	3.11 Failed to write the roll code
	3.12 PWR CR reg is Incorrectly Reset
	3.13 I2C

	4. Version History
	5. Others

